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Abstract  

In this work, we use proper-orthogonal decomposition (POD) method to decompose an ensemble of 

pressure field data into spatiotemporal modes that gives insights into pressure distributions in the ice-

induced vibration experiments. In the analysis, we use the Test-4300 within the Deciphering Ice-Induced 

Vibrations (DIIV) test campaign illustrating intermittent crushing with the ice speeds of 20 and 30 

𝑚𝑚/𝑠. Using an error threshold criterion, we show that first three empirical modes (hereinafter called 

pressure modes) represent most of the dynamics within the dataset. Although, this method successfully 

identifies the pressure modes in frequency lock-in and at low ice speeds in intermittent crushing, we 

only concentrate on low ice speeds in this paper for clarity. 
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1. Introduction  

Ice-induced vibration (IIV) is an inherent problem seen in many offshore structures (i.e., oil platforms, 

offshore wind turbines) located in ice infested waters. 

Offshore structures in the Arctic and Subarctic regions may interact with the ice (i.e., level ice, deformed 

ice etc.) which may cause ice-induced vibrations. This type of interaction is very dangerous since it may 

decrease the operational time significantly and may give fatigue related damages to the structures, which 

potentially costs significant amount of money to the offshore industry. Therefore, IIV has a growing 

interest not only within the research community, but also in the offshore industry. 

IIVs first reported in the work of Blenkarn (1970) where full-scale observations of different structures 

in Cook Inlet, Alaska have been made. Later, many efforts have been made to understand such complex 

interactions through laboratory model tests (i.e., Kärna et al., 2003a, 2003b, Sodhi, 2001, Barker et al., 
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2005, Wells et al., 2011, Määttänen et al., 2012, Nord et.al, 2015 etc.) and field tests (i.e., Määttänen, 

1975, Frederking et al., 1986, Bjerkås et al., 2013 etc.).  

Among those, Sodhi (2001) conducted experiments on a flexible structure, where he showed that at low 

indentation speeds, local pressures on the structure simultaneously increased. As the indentation speed 

increased, the pressure distribution on the structure also changed and at the onset of the failure, the 

pressure varied during failure period. These observations lead a scientific question: “Is there a global 

pressure distribution exist in different dynamic modes on the structure? If yes, how can we quantify such 

coherent distributions?” In order to answer this question, we use a well-known multivariate analysis 

method called proper orthogonal decomposition (POD) which is also known as principal component 

analysis (PCA), singular value decomposition (SVD), and Karhunen-Loeve decomposition in different 

research areas (see section 2.2). Our approach to the problem resembles to the approach that have 

generally been used in the experimental fluid mechanics community (Berkooz et al., 1993, Epps and 

Techet, 2010 etc.) where the method has been used to analyze particle image velocimetry (PIV) data.  

In the present study, we apply POD to the three-dimensional pressure dataset and reveal organized 

patterns within the pressure data, which we name as pressure modes. These modes are commonly 

referred as coherent flow structures in fluid mechanics.  

 

2. Experiments  

In the present study, one set of experimental data was analyzed in DIIV. The DIIV campaign was 

initiated by Norwegian University of Science and Technology (NTNU) in the beginning of 2011 to 

understand the complex ice-induced vibrations through model tests. Scale-model tests were conducted 

in the EU HYDRALAB at the Hamburg ship model basin (HSVA) ice-tank facility in Hamburg, 

Germany. In the experiments, ice and structural parameters were systematically investigated in a well-

defined test setup as described in Määttänen et al. (2012).  

 

2.1. Relevant Data 

Of particular interest, we chose different failure modes from Test-4300 of DIIV campaign. In Test-4300, 

we analyzed the ice speeds of 20 and 30𝑚𝑚/𝑠, which represent two low ice speed intermittent crushing 

modes. 

As a result, we are interested in how pressure due to the ice is distributed spatiotemporally and how 

pressure modes look like.  

In Test-4300, the structure had a natural frequency of 12.2𝐻𝑧 and diameter of 220𝑚𝑚 where ice drift 

was systematically varied between the ice velocity values of 10-320𝑚𝑚/𝑠 (Nord et al., 2015). The 

pressure at the ice-structure interface was measured with a tactile sensor, whereas responses were 

measured by accelerometers, lasers and strain gauges, with a sampling frequency of 100Hz. 
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2.2. POD analysis 

POD is a mathematical matrix decomposition method that helps to characterize the coherent structures 

in a dataset. It is widely used for modal analysis, modal order reduction and characterization of both 

linear and non-linear systems (Berkooz et al., 1993, Feeny and Kappagantu, 1998, Gedikli et al., 2017, 

Kerschen et al., 2005, Ma et al., 2001). Although POD is a linear approach, it is also applied to the 

nonlinear problems since it does not violate the physical laws of linearization methods as shown in 

Berkooz et al. (1993). 

Derivation of the POD method is straightforward. Let 𝐷 be 𝑚 × 𝑛 zero mean data matrix, where 𝑚 

represents snapshots and 𝑛 represents position state variables. In POD, we are looking for base functions 

𝑝𝑛(𝑡) and 𝜒𝑛(𝑥), which describe the original data matrix best in least squares sense. Data matrix can be 

written as: 

𝐷(𝑥, 𝑡) = ∑ 𝑝𝑛(𝑡)𝜒𝑛(𝑥)

∞

𝑛=1

 (1) 

where 𝐷(𝑥, 𝑡) ∈  ℝ 𝑚×𝑛, and 𝜒𝑛(𝑥) represents the orthonormal basis functions (modes) and 𝑝𝑛(𝑡) 

represents corresponding time coordinates. A detailed derivation of this method can be found in many 

studies such as Berkooz et al. (1993), Cruz et al. (2005) and many more.  

Geometrically, the meaning of POD is simple. A scalar field sampled in time can be imagined as a cloud 

of points in a 𝑛-dimensional space, where 𝑛 is the number of spatial sampling points. In this space, POD 

fits the best ellipsoid to this cloud of points in the least squares sense where the directions of semi-

principal axes give proper orthogonal modes (POM) and the squared magnitudes of the semi-principal 

axes correspond to the variance of the projection points on the subspace span by the corresponding axes 

and represent proper orthogonal values (POV). Therefore, POD provides energy optimal reduction in 

dimension in the least-squares sense. 

In our current dataset, we have a three-dimensional pressure data where pressure fluctuation is sketched 

as in Fig.1. When an ice sheet hits the structure, it creates a high-pressure zone on the structure. As this 

ice-structure interaction continues, this pressure may move not only up and down (structural depth), but 

also on the circumference of the structure. Therefore, in the analysis, pressure varies not only in the 𝑥𝑦 

phase space but also in the direction of structural depth (into the paper). 
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Fig. 1. Example illustration of the ice-structure interaction with varying pressure field as snapshot. Structure is 

fixed and ice sheet moves from right to left (in the negative x direction) with speed of U 𝑚/𝑠.  

 

Suppose that pressure variation has the form of 𝒅 = [𝑥, 𝑦]. So, fluctuating pressure components of the 

snapshots can be written as a one data matrix as; 𝑫 = [𝒅𝟏𝒅𝟐 ⋯ 𝒅𝑵]. In other words, each snapshot of 

pressure fluctuations has been reorganized and arranged into two-dimensional 𝑚 × 𝑛 data matrix 

where 𝑚’s size is equal to the size of 𝑥𝑦. 

Since, in POD we solve the eigenvalue of the auto covariance matrix, we first calculate the auto 

covariance matrix as: 

𝑨 = 𝑫𝑇𝑫 (2) 

where T represents transpose. 

Next, one can solve the eigenvalue problem of A as: 

𝑨𝑽𝑖 = 𝜆𝑖𝑽𝑖 (3) 

where 𝑽 represents the eigenvector matrix, and 𝜆 represents the corresponding eigenvalues. Then, 

eigenvalues and corresponding eigenvectors are sorted in descending order. This step is very important 

because, it allows us to sort the modes where most dominant (coherent) structures will be in the first 

subspace dimensions.  

Then, projecting the eigenvectors onto the data matrix and normalizing them to unit magnitude gives 

the corresponding proper orthogonal modes (POMs). Then, by reshaping the two-dimensional matrix 

back to the three-dimensional matrix, one can illustrate the coherent structures that are active in the 

system. Mathematically, any 𝑖𝑡ℎ POD mode of 𝜒𝑖 may be found calculating the following equation: 

𝜒𝑖 =
∑ 𝑉𝑖.𝑛𝒅𝒏

𝑁
𝑛=1

‖∑ 𝑉𝑖.𝑛𝒅𝒏
𝑁
𝑛=1 ‖

   (4) 

where = 1,2, … , 𝑵 , 𝑉𝑖,𝑘 represents the 𝑛𝑡ℎ eigenvector corresponding to 𝑖𝑡ℎ eigenvalue. Then, one can 

also compute the basis function of 𝑝𝑛(𝑡) in Eq.1 by projecting the pressure field onto the POMs (see 
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Eq.5). This basis function is also known as proper orthogonal coordinates (POCs). Forming a POM 

matrix of 𝜙 = [𝜒1, 𝜒2, 𝜒3, … , 𝜒
𝑁

], one can calculate the POCs as: 

𝒑𝑛 = 𝝓𝑇𝒅𝑛  (5) 

Original data can be reconstructed using any first 𝑟 POMs (with rank 𝑟 approximation where 𝑟 < 𝑁): 

𝑫𝑟(𝑥, 𝑡) = 𝝓𝒓(𝒙)𝒑𝒓(𝒕) (6) 

Eigenvalues of the auto covariance matrix are generally referred as energies corresponding to the POMs 

in fluid mechanics since it is related to fluid’s kinetic energy (see Chatterjee, 2000). Although, we do 

not attempt to relate the fluid characteristics to the pressure characteristics in this study, it is assumed 

that distributed pressure variation on a structure resemble to flow variations in a system. 

The quality of the reconstruction (mode energy) can be found using the singular values (eigenvalues):  

𝐸𝑟  [%] =
𝜆𝑟

∑ 𝜆𝑛
𝑁
𝑛=1

  (7) 

where 𝐸 represents energy and 𝑟 is the rank (number of modes used in the reconstruction). Solution to 

this equation gives the energy fraction of each possible modes. We use the term singular value here 

because squares of the singular values in singular value decomposition are equal to eigenvalues of the 

covariance matrix (see Chatterjee, 2000). In other words, singular values presented here represent the 

eigenvalues of the auto covariance matrix. Alternatively, the eigenvalues can be sorted logarithmically 

and the energy difference between each mode can easily be seen on a logarithmic plot. In this study, we 

use the second method as an illustration of the modal contributions. 

 

3. Results and Discussion 

In this section, we analyze the intermittent crushing in the Test-4300 within the DIIV campaign. In the 

analyses, zero-mean pressure responses were obtained using Butterworth  8th order high-pass filters with 

1 𝐻𝑧 cut-off frequency. The cut-off frequency was chosen based on the visual inspection of the 

frequency response so that it is sufficient to cancel the zero frequencies. Therefore, zero-mean response 

is attributed to the dynamic pressure variations and mean component is attributed to the static pressure 

on the structure. Due to the fact that ice can behave ductile and brittle depending on the relative 

indentation speed between ice and structure, the load build up and unloading phase are very different 

during intermittent crushing. During load build up, the relative speed between the indenter and ice is 

close to zero, the contact area and pressure grow, which cause ductile deformation of the ice. Upon ice 

fracture, the relative speed between ice and structure increases with orders of magnitude, and causes 

brittle ice failure hence a sharp load drop.  

Two different time series of intermittent crushing were analyzed at 20 and 30 𝑚𝑚/𝑠 ice speeds, 

respectively. Both time series had 1500 samples from 2288 sensels, and time history of the force 

displayed the classical saw-tooth type of response.  
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3.1. Intermittent crushing at ice speed of 30 mm/s 

Fig.2 illustrates the original and high-pass filtered time histories of the pressure sums on the structure. 

As one can clearly see, applied filter successfully moves the mean to zero-value, which is very important 

to analyze the dynamic variations. 

 

 

Fig. 2. Time history of the response at 30𝑚𝑚/𝑠. Blue: Original response. Red: High-pass filtered response at cut-

off frequency of 1𝐻𝑧. 

 

Fig.3 shows the singular values and corresponding POMs. As one can see, first singular value is 

significantly larger than other singular values suggesting that the first mode is the most dominant mode. 

Since, POD sorts the modes based on their energies in the descending order, it means that POM in the 

second subspace dimension is the second most dominant mode and so on. Right image in Fig.3 illustrates 

the corresponding POMs. As expected, pressure distribution has a line shape on the structure in the first 

subspace dimension. This pressure mode represents the most dominant distribution and representative 

of the ductile load build up on the structure. As the subspace dimension increased, the contribution of 

the higher order modes decreases. Second and third POM shows the dynamic variations of the pressure 

on the structure. Since, these modes are representative of orthogonal directions; it is believed that they 

represent the pressures in the orthogonal directions. In fact, when comparing the POD coefficients of 

the first three modes to the structural response, it was found that second and third mode contained peaks 

at frequencies coinciding with cross-flow vibrations of the structure. This also supports the idea that 

higher order modes are related to the dynamic pressure variations in the orthogonal directions. 
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Fig. 3. Left image: Logarithmic distribution of the singular values for the first 10 subspace dimensions at the ice 

speed of 30𝑚𝑚/𝑠. Right image: First three POMs. Colors indicate the normalized pressure variation. 

 

Fig.4 shows the original and reconstructed signals using first three POMs. Normalized root-mean-

squared-error (NRMSE) was computed for the original and reconstructed signals, and then the resulting 

solution was normalized with the maximum variation (height) in the original data. As a result, one can 

see that rank-3 approximation of the sum of the pressure at ice speed of 30𝑚𝑚/𝑠 results very good 

accuracy with the NRMSE value of 0.055 (only 5.5% of reconstruction error). This result supports the 

argument presented for Fig.3 where first three POMs represent the total dynamic and static pressure 

variations on the structure with close to 94% accuracy.  

 

 

Fig. 4. Original time history of the pressure with the reconstructed pressure using first three POMs at ice speed of 

30 𝑚𝑚/𝑠.  

 

3.2. Intermittent crushing at ice speed of 20 mm/s 

Fig.5 illustrates the original and high-pass filtered time histories of the pressure sums on the structure at 

the ice speed of 20𝑚𝑚/𝑠. Similar to previous case, used filter successfully moves mean to zero.  
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Fig. 5. Time history of the response at 20𝑚𝑚/𝑠. Blue: Original response. Red: High-pass filtered response at cut-

off frequency of 1𝐻𝑧. 

 

Fig.6 illustrates the computed singular values in descending order and corresponding first three POMs. 

From the left image in Fig.6, one can clearly see that first singular value is significantly larger than 

second singular value. Although, second and third singular values are very close to each other, there is 

a jump between the third and higher order modes. Since singular values were sorted in descending order, 

one can say that energy in the first POM is larger than second POM, and energy in the second mode is 

larger than third POM and so on. Right image in the Fig.6 shows that first POM resembles to a line 

shaped pressure mode where pressure was distributed along the circumference of the structure. Second 

POM in this case resemble to the second POM at 30 mm/s where pressure varies in two directions 

(similar to traveling wave type of response). However, third POM is completely different from third 

POM at 30 mm/s. At lower ice speed of 30 mm/s, pressure distribution resembled to traveling type of 

response, which is similar to second POM at the same ice speed. However, at ice speed of 20 mm/s, 

third POM shows that there are two distinct line of pressures across the span. This suggests that, pressure 

is active in two directions at the same time at the third subspace dimension. This makes sense because, 

when ice hits the structure, the pressure on the structure may vary both up and down (vertically), and 

along the circumference of the structure (spatially) at the same time.  
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Fig. 6 Left image: Logarithmic distribution of the singular values for the first 10 subspace dimensions at the ice 

speed of 20𝑚𝑚/𝑠. Right image: First three POMs. Colors indicate the normalized pressure variation. 

 

Fig.7 shows the original and reconstructed signals using first three POMs. NRMSE was computed for 

the original and reconstructed signals, and then, the resulting solution was normalized with the 

maximum variation (height) in the original data. As a result, one can see that rank-3 approximation of 

the sum of the pressure at ice speed of 20𝑚𝑚/𝑠 results very good accuracy with the NRMSE value of 

0.051 (only 5.1% of reconstruction error). This result supports the argument presented for Fig.3 and 

Fig.6 where first three POMs represent the total dynamic pressure variations on the structure.  

 

 

Fig. 7. Original time history of the pressure with the reconstructed pressure using first three POMs at ice speed of 

20𝑚𝑚/𝑠. 

 
4. Conclusion 

In this study, POD was applied to examine the pressure activity on the structure due to ice-induced 

vibrations. The derivation of the POD method was outlined and relationship between POC, and POM 

was noted. A criterion for determining the active pressures in the structure was proposed using signal 

reconstruction error. It was found that first POM illustrated the ductile pressure variation on the structure 
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therefore it is the most dominant mode and inherently it is in the direction of ice flow. First three modes 

confirmed that three active modes were detected in the system and one can reconstruct the original signal 

with less than 6% error in both cases. It is believed that higher order modes were contaminated with the 

added noise due to complex ice-structure interaction.  

The intention of this work is not to favor one method over another. Here, we only attempt to find the 

pressure modes that are active in our current system. In fact, other methods such as smooth-orthogonal 

decomposition (Gedikli et al., 2017, Chelidze and Zhou, 2006), or dynamic mode decomposition (Tu, 

2013), found to work better in a highly nonlinear system. However, these methods are relatively new 

and it is not clear if they work with any kind of dataset, whereas POD is an established method with 

many field of applications.  

We also applied POD and SOD to different vibration modes in complex ice-structure interactions and 

analyzed the results. These results are not presented here, and they will be published in a separate journal 

paper. 
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